• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
Friedrich-Alexander-Universität Lehrstuhl für Chemische Reaktionstechnik CRT
  • FAUZur zentralen FAU Website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Chemie- und Bioingenieurwesen
Suche öffnen
  • en
  • de
  • UnivIS
  • Mein Campus
  • StudOn
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Chemie- und Bioingenieurwesen
Friedrich-Alexander-Universität Lehrstuhl für Chemische Reaktionstechnik CRT
Menu Menu schließen
  • Über Uns
  • Personen
  • Lehre
  • Forschung
  1. Startseite
  2. Forschung
  3. Arbeitsgruppen
  4. Komplexe Katalysatorsysteme und kontinuierliche Verfahren
  5. Hybrid Materials (HyMat) for Catalysis and Purification
  6. SLP catalysis

SLP catalysis

Bereichsnavigation: Forschung
  • Arbeitsgruppen
    • Heterogene Katalyse
    • Komplexe Katalysatorsysteme und kontinuierliche Verfahren
      • Homogene Katalyse
      • Ionische Flüssigkeiten & Molten Salts
      • Performance und Synthese von Ionischen Flüssigkeiten
      • Wasserstoff und Energie
      • Hybrid Materials (HyMat) for Catalysis and Purification
        • Catalytic Recycling of Plastic Waste
        • Reaction monitoring
        • Reactor design
        • SCALMS catalysis
        • SCILL catalysis
        • SILP gas purification
        • SLP catalysis
    • Poröse und hierarchische Materialien
    • Supported Ionic Liquid Phase (SILP) Katalyse
  • Publikationen
  • Technische Ausstattung
  • Verbundprojekte

SLP catalysis

Prof. Dr. Marco Haumann

Prof. Dr. Marco Haumann

  • E-Mail: marco.haumann@fau.de

Overview

Dissolving homogeneous catalyst complexes or biocatalysts in thin films of liquid on porous supports can overcome the intrinsic separation problem associated with such liquid phase catalysts. High boiling organic liquids were intensively studied as supported liquid phase (SLP) catalysts in the 1970s, while thin water films were developed as supported aqueous phase (SAP) catalysts in the early 1980s. The advent of ionic liquids and molten salts has seen supported ionic liquid phase (SILP) materials being developed around 2000. The intrinsic property of having an extremely low vapor pressure makes SILP materials ideally suited for continuous gas-phase applications.

Selected publications

  • Jakuttis M., Schönweiz A., Werner S., Franke R., Wiese KD., Haumann M., Wasserscheid P.:
    Rhodium-Phosphite SILP Catalysis for the Highly Selective Hydroformylation of Mixed C4 Feedstocks
    In: Angewandte Chemie International Edition 50 (2011), S. 4492--4495
    ISSN: 1433-7851
    DOI: 10.1002/anie.201007164
  • Werner S., Szesni N., Kaiser M., Fischer R., Haumann M., Wasserscheid P.:
    Ultra-Low-Temperature Water-Gas Shift Catalysis using Supported Ionic Liquid Phase (SILP) Materials
    In: ChemCatChem 2 (2010), S. 1399--1402
    ISSN: 1867-3880
    DOI: 10.1002/cctc.201000245
  • Schneider M., Lijewski M., Woelfel R., Haumann M., Wasserscheid P.:
    Continuous Gas-Phase Hydroaminomethylation using Supported Ionic Liquid Phase Catalysts
    In: Angewandte Chemie International Edition 52 (2013), S. 6996-6999
    ISSN: 1433-7851
    DOI: 10.1002/anie.201301365
  • Kohler F., Gärtner K., Hager V., Haumann M., Sternberg M., Wang X., Szesni N., Meyer K., Wasserscheid P.:
    Dimerization of ethene in a fluidized bed reactor using Ni-based Supported Ionic Liquid Phase (SILP) catalysts
    In: Catalysis: Science and Technology 4 (2014), S. 936--947
    ISSN: 2044-4753
    DOI: 10.1039/c3cy00905j
  • Marinkovic JM., Riisager A., Franke R., Wasserscheid P., Haumann M.:
    Fifteen Years of Supported Ionic Liquid Phase-Catalyzed Hydroformylation: Material and Process Developments
    In: Industrial & Engineering Chemistry Research 58 (2019), S. 2409-2420
    ISSN: 0888-5885
    DOI: 10.1021/acs.iecr.8b04010
  • Schwarz C., Agapova A., Junge H., Haumann M.:
    Immobilization of a selective Ru-pincer complex for low temperature methanol reforming–Material and process improvements
    In: Catalysis Today 342 (2020), S. 178-186
    ISSN: 0920-5861
    DOI: 10.1016/j.cattod.2018.12.005

Projects

Hydroformylation:

  • ROMEO Project
  • MACBETH Project
  • MACBETH Project video on Youtube

 

Friedrich-Alexander-Universität
Erlangen-Nürnberg

Egerlandstr. 3
91058 Erlangen
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Nach oben