• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
Friedrich-Alexander-Universität Lehrstuhl für Chemische Reaktionstechnik CRT
  • FAUZur zentralen FAU Website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Chemie- und Bioingenieurwesen
Suche öffnen
  • en
  • de
  • UnivIS
  • Mein Campus
  • StudOn
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Chemie- und Bioingenieurwesen
Friedrich-Alexander-Universität Lehrstuhl für Chemische Reaktionstechnik CRT
Menu Menu schließen
  • Über Uns
  • Personen
  • Lehre
  • Forschung
  1. Startseite
  2. Forschung
  3. Arbeitsgruppen
  4. Komplexe Katalysatorsysteme und kontinuierliche Verfahren
  5. Hybrid Materials (HyMat) for Catalysis and Purification
  6. Reaction monitoring

Reaction monitoring

Bereichsnavigation: Forschung
  • Arbeitsgruppen
    • Heterogene Katalyse
    • Komplexe Katalysatorsysteme und kontinuierliche Verfahren
      • Homogene Katalyse
      • Ionische Flüssigkeiten & Molten Salts
      • Performance und Synthese von Ionischen Flüssigkeiten
      • Wasserstoff und Energie
      • Hybrid Materials (HyMat) for Catalysis and Purification
        • Catalytic Recycling of Plastic Waste
        • Reaction monitoring
        • Reactor design
        • SCALMS catalysis
        • SCILL catalysis
        • SILP gas purification
        • SLP catalysis
    • Poröse und hierarchische Materialien
    • Supported Ionic Liquid Phase (SILP) Katalyse
  • Publikationen
  • Technische Ausstattung
  • Verbundprojekte

Reaction monitoring

Prof. Dr. Marco Haumann

Prof. Dr. Marco Haumann

  • E-Mail: marco.haumann@fau.de

Overview

We are interested in following the progress of reactions by means of several analytical tools to derive relevant kinetic data. The usually continuous reactors are all connected to online analytical devices which either consist of micro-GC, process-GC or spectroscopic devices.

For the study of the active sites under relevant gas-phase operation conditions, we can make use of an in-house built FTIR cell. Small volumes of liquid-phase systems can be investigated by the use of photonic crystal fibers (PCF) as nano-reactors. The PCF approach enables reaction monitoring at extremely low sample volumes and with, compared to batch techniques, unprecedented temporal resolution. Larger volume of liquid-phase reaction mixtures have been investigated with the help of a high-pressure NIR flow-through cell. By chemometrical analysis the extraction of exact information out of the broad and overlapping NIR peaks and the data treatment of multivariate data sets is possible.

Determining the individual concentration profiles of substrate and products as well as temperature profiles along the fixed-bed axis is possible with the help of a compact profile reactor (CPR) designed by TUHH. We have demonstrated the feasibility for high temperature applications recently.

In house developed IR cell for operando reaction monitoring

Selected publications

  • Kaftan A., Schönweiz A., Nikiforidis I., Hieringer W., Dyballa KM., Franke R., Görling A., Libuda J., Wasserscheid P., Laurin M., Haumann M.:
    Supported homogeneous catalyst makes its own liquid phase
    In: Journal of Catalysis 321 (2015), S. 32-38
    ISSN: 0021-9517
    DOI: 10.1016/j.jcat.2014.10.019
  • Strobel V., Schuster J., Bräuer A., Vogt L., Junge H., Haumann M.:
    Shining light on low-temperature methanol aqueous-phase reforming using homogeneous Ru-pincer complexes – operando Raman-GC studies
    In: Reaction Chemistry & Engineering (2017)
    ISSN: 2058-9883
    DOI: 10.1039/C6RE00228E
    URL: http://pubs.rsc.org/en/content/articlelanding/2017/re/c6re00228e#!divAbstract
  • Bauer T., Stepic R., Wolf P., Kollhoff F., Karawacka W., Wick C., Haumann M., Wasserscheid P., Smith DM., Smith AS., Libuda J.:
    Dynamic equilibria in supported ionic liquid phase (SILP) catalysis: in situ IR spectroscopy identifies [Ru(CO)xCly]n species in water gas shift catalysis
    In: Catalysis: Science and Technology 8 (2018), S. 344-357
    ISSN: 2044-4753
    DOI: 10.1039/C7CY02199B
  • Wolf P., Aubermann M., Wolf M., Bauer T., Blaumeiser D., Stepic R., Wick C., Smith DM., Smith AS., Wasserscheid P., Libuda J., Haumann M.:
    Improving the performance of supported ionic liquid phase (SILP) catalysts for the ultra-low-temperature water-gas shift reaction using metal salt additives
    In: Green Chemistry 21 (2019), S. 5008-5018
    ISSN: 1463-9262
    DOI: 10.1039/c9gc02153a
  • Blaumeiser D., Stepic R., Wolf P., Wick C., Haumann M., Wasserscheid P., Smith DM., Smith AS., Bauer T., Libuda J.:
    Cu carbonyls enhance the performance of Ru-based SILP water-gas shift catalysts: a combined in situ DRIFTS and DFT study
    In: Catalysis: Science and Technology 10 (2020), S. 252-262
    ISSN: 2044-4753
    DOI: 10.1039/c9cy01852b
  • Wolf M., Raman N., Taccardi N., Horn R., Haumann M., Wasserscheid P.:
    Capturing spatially resolved kinetic data and coking of Ga-Pt Supported Catalytically Active Liquid Metal Solutions during propane dehydrogenation in situ
    In: Faraday Discussions (2020)
    ISSN: 1359-6640
    DOI: 10.1039/D0FD00010H
  • Schorn F., Aubermann M., Zeltner R., Wasserscheid P., Haumann M., Joly N.:
    In-situ monitoring of homogeneously catalysed reactions using raman spectroscopy inside hollow-core photonic crystal fibres
    CLEO: Science and Innovations, CLEO_SI 2020 (Washington, DC, 10. Mai 2020 - 15. Mai 2020)
    In: Optics InfoBase Conference Papers 2020
    DOI: 10.1364/CLEO_SI.2020.SM4M.8

Partners

  • Max-Planck Institute for the Science of Light
Friedrich-Alexander-Universität
Erlangen-Nürnberg

Egerlandstr. 3
91058 Erlangen
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Nach oben